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Abstract. In this article, the conditions for the regular solution of the boundary problem for a class of second-order operator-differential
equations with truncated coefficients are derived. These equations have been specifically constructed to mathematically determine the
corrosion time of metals in aggressive environments, which has crucial implications in fields such as materials science and engineering. The
study focuses on identifying the precise conditions under which the problem exhibits regular solvability, a key aspect of ensuring the
reliability of the solutions in practical applications. Furthermore, the obtained conditions are explicitly expressed in terms of the operator
coeflicients of the equation, offering a more robust framework for understanding the solvability of such operator-differential equations in
various contexts. These results contribute significantly to both the theoretical and applied aspects of mathematical physics and engineering,
especially in the analysis of physical systems subject to corrosion and other environmental factors.
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1. INTRODUCTION

Many issues in mechanics, mathematical physics, and the theory of partial differential equations necessitate a
comprehensive examination of the solvability of boundary value problems for operator-differential equations
across various functional spaces [1-7_. These investigations are essential not only for theoretical understanding
but also for practical applications in engineering, physics, and applied mathematics.

For instance, certain challenges in the theory of elasticity within strips [8-107, along with problems
concerning the vibrations of mechanical systems [97 and the oscillations of elastic cylinders (107, underscore the
critical nature of studying specific boundary value problems associated with operator-difterential equations. Such
studies are foundational for advancing the spectral theory of quadratic beams and higher-order beams, which play
a pivotal role in modern structural analysis and design.

An illustrative example of this relationship is the analysis of the stress-strain state of a slab, which
necessitates the resolution of problems related to the theory of elasticity in strips. This exploration not only
enhances our theoretical frameworks but also informs practical design considerations in civil and mechanical
engineering, where understanding material behavior under stress is paramount. The ability to predict how
structures will respond to external forces is vital for ensuring safety and reliability in engineering projects.

In addition, the quest for precise values of norms or their upper bounds for operators of intermediate
derivatives presents significant mathematical interest. These investigations are critical for developing theoretical
insights and practical methodologies in various fields of mathematical analysis [11,127]. For example, in
approximation theory [137, understanding these norms facilitates the creation of better approximation schemes,
which are vital for numerical analysis and computational methods. This can lead to more accurate simulations in
engineering applications, improving design processes and outcomes.

Moreover, the interplay between theoretical advances and practical applications highlights the importance of
interdisciplinary research. The methodologies developed through studying operator-differential equations often
find applications in diverse areas such as control theory, signal processing, and even financial mathematics. For
instance, in control systems, understanding the dynamics of operator-differential equations can lead to more
effective control strategies, optimizing system performance. Similarly, in financial mathematics, the techniques
derived from these studies can be used to model complex financial instruments, providing better risk assessments
and decision-making tools.

Ultimately, the ongoing research in this area promises to deepen our understanding of both fundamental and
applied problems, paving the way for new discoveries and advancements in science and engineering. The
continuous exploration of these topics not only enriches the mathematical landscape but also drives innovation,
opening new avenues for research and practical applications across multiple disciplines.

2. SOME DEFINITION AND AUXILIARY FAKTS
Let H is a separable Hilbert space, A positive definite self-adjoint operator in H with domain D(A). Let
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7 > 0. Then, as is known, the domain of definition of the operator A” turns into a Hilbert space H , Le.
H, = D(Ay),(x,y)y :(Nx,Ayy),x,ye H,.
At ¥ =0 believe that Hy = H , but (x,y), = (x,y).
Let @ and b be real numbers such that —oco <a <b <oo. We denote by L, ((a , b); H ) the Hilbert space

of all vector functions defined on an interval (a , b) almost everywhere, with values in H , measurable and square
integrable with the norm

b ) A
¥l opm :U”f(tm dt] <o,

Obviously, the scalar multiplication in L, ((a , b); H ) is given by the formula
b

(F.9) ey = J (F O gO)dt,  £(t).glt)e L ((a,b}H).

Assumme a=-00, bh=-o00, ie. (—oooo)z R believe that Lz((a,b); H)= LZ((—oo,oo); H) = LZ(R; H),
but a=0, b=—-w,ie (a,b)=(0,00)= R, . Believe that L,((a,b};H)==L,((0,2)H)=L,(R,;H).

Following the monograph [17] we introduce Hilbert spaces for M>1 (M-natural number)

w," ((a, b); H ) = {u (t) -y (t) eL, ((a, b); H ), A"u (t) elL, ((a, b); H )} the scalar multiplication

(u 'V)Wzm((a,b);H) = i(u(m)(t),v(m)(t))d t+ j.(Amu (t), Amv(t))d t.

a

Here and in what follows, we will understand all derivatives in space H the sense of distribution theory [17.
For this work, we use spaces W2m ((a, b); H ) atm=1m=2.
Here, we also assume that for (a, b) =R= (— 00, oo)
W,"((=o0, 50} H) =W, (R H),
but a=0,b=co((a,b)=R, =(0,0))
W,"((0, 0k H)=W;"(R,:H).
Let us note some properties of the space W," ((a, b); H ) r17:
LIfueW,” <R+; H) then there are numbers €, >0

L dfu
. B
Ul
This is called the intermediate derivative theorem.
2.If U eW," (R+; H) then the operator L U= U(k)(to) is a continuous operator from the space W,"((a,b); H)

k=0,m.

W' ((a,b)iH)

in H . k=0,m-1,ie.

1
Am_k_zu(k)(to* < B|u
L,((a,b)H)
where 1 € [a , b]. When researching local issues, we need to find the following subspaces W22 ((a , b); H )
W2(a,b;0,1)={u:ueW?((a,b);H),u(a)=0,u(b)=0},
W2(a,b;0,1)={u:ueW?((a,b);H),u (a)-u' (b)=0},
W2(a,b;e)=fu:ueW?2((a,b);H),u (0)=e"u (b),u"(0)=e"u’(b)},
as well as sub-space W21 ((a,b); H):
W}(a,b;0,1)={u:uew}((a,b);H),u(a)=u(b)=0}.

Note that if ueW, (R;H), ueW;((@,b);H) then Ju ., . < const]u]]

wp(apyry K =0,m=1,

W2(R:H) Here —o<a<b<oo.
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This fact flows from the theorem on continuation [1]. At @ € Hy e Mo €W22 ((a,b); H ),O <a<b<ow.
2

Really,
_ 2 _ 2 3 2
He " W2 (R;H) N H A2 At(o L,((a,b); + H A2 At(o L,((a,b);H) -
L ZT(A ‘o, A%e Mp)dt
S 0
Denote by A%go = . Then
o ”° ]

W= ZI(A%eAtt//, A%eAtw)dt = ZJ(Ae*ZAty/,t//)dt = ZJ J-(Ge‘z"‘t//,t//)d (E,w,w)=

(d Egt//,t//) 22k (1 e a"“)

a

= ZO'T [Jie_z"tJd (E,w,w)= Te 2t
Lo a

Ho

o,
Thus,e_Atgo €W22 ((a,b); H), at @ € Hy. Conversely, if e_At(D GWZ2 (R+ : H), then it follows from the trace
2

theorem that @ e Hy. Next, we note that if a=0,b=T >0, then the general solution to the equation
2

—u (t)+ AU (t) =0,te (O,t) presented in the form
u,(t)=ep, +e 0 0,0, € H/. Similarly @ € H%, then e @ eW/((a,b);H), 0<a<b<o.

. Assuming A%go =i have
L((a,b):H)

2 A— At

Really H e Mo

e

W ((a.b)

2

W2 ((@b)iH)

2
—At o g 22k (1_ e -2(b-a) o )” @ ”

H ° L,((a,b);H) - %

. -At_ 12
At a=0,b =00 we obtain He 2.,

W2((a.0): _|| (0” 3 Further, note that the general solution of the equation

d “() +f(t)A%u(t)=0

dt?
from the space W22 ((0 ,T); H) has the form

(t)_ atA(01+e (t07t)A§02,t€(0,t0)
u, - e —Blt-ty)A B(T-t)A (
@, +e o, te tO,T)

where A a positive definite self-adjoint operator,

az,te(Ot )
S P g .

O, Qyy Py, Py € Hy and the equalities must be satistied
2

u(t0—0)=u(t0+0)
u'(t,—0)=u'(t,+0)

Further, we note that L(X ,Y) we will denote the space of linear bounded operators acting from the space X to
the Banach space Y . Through o, (H ) GOO(H) denote the space of completely continuous operators acting in H

Now let's enter the space below

Woas {uu eW2(0,T):T),u (0)= Su'(0),u (T)=0}

where S e L(H%,H%).
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3. ON THE EXISTENCE OF REGULAR SOLUTION OF BOUNDARY VALUE PROBLEMS
Consider in a separable Hilbert space H boundary value problems

S0, a0 A0 a u0)= 1) o
u(0)=Su'(0),u(T)=0, (2)

where U (t ), f (t ) vector function defined in (0 T ) almost everywhere with values in

H , the operator coefficients satisty the conditions:
1) A positive definite self-adjoint operator in H ;

p(t)z{az,te(o,to)

B telt,T)t,e(0,T)

2) p(t) numeric function

where ¢ >0, >0;
3) operators A,(t), Az(t) ateach t e (O,T ) linear; A, (t)A_l, A, (t)A_2 are restricted H

sup [A,(t)A™| <o, te(0,T ), sup|A,(t)A?| <o, te(0,T);
t t

4) operatorS:H%—)H}/2 linear,SeL(H%,H%)-

Definition 1. Ifat f (t)e L,((0,T);H) exists a vector function U (t )€W22 (R+; H ), satistying equation (1)
almost everywhere, then we will call it a regular solution of equation (1).
Definition 2. Ifat f (t )e L,((0,T);H) there is a regular solution U (t )EWZ2 (R+; H) equation (1), which

satisfies the boundary conditions (2) in the sense of convergence

im u (t)-Su(t)],, =0, lim [u (t)H%=o,

t>t+0 t>T-0
then U(t ) will be called a regular solution of problem (1), (2).
Definition 3. If for any f(t)e L,((0,T);H) there is a regular solution u(t )W} (R+; H) problem (1), (2)
and the following estimates hold
Ju

<const | f

W7 ((0.T):H) L,((0.T);H)’

then we say that problem (1), (2) is regularly solvable.

4. THE MAIN RESULTS
First, we will investigate the regular solvability of the problem

S A= 10) ®
_— u(0)=Su (0),u(T )=0. (4)
enote by
P{%)=—d;l:2(t)+p(t)A2u(t),te(O,T),UGV(\)/z,s((O,T);H),
p(% - a0 A, Oute), (0T )u cWas((0,T):H),

02
Pu=Pu+Pu,ueW,s((0,T);H).
First, let's prove some assertions
Lemma 1. Let conditions 1), 2) and 4) be satisfied, Re AS >0 in Hy . Then the equation P,u =0 has only
2

zero solution.
02
Proof. Let UeW 2 s ((0 ,T); H ) Then from equation (3) we obtain that
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SR80 )= p R (), te(0,T ).

dt?
Hence we have:
, 2
Hp% d uz(t) +p% (t)A%u(t) ZHP% Pu :
dt LL(O.T)H) Lo((0,T):H)
Thus,
| | ) 2 y o du [
= 2Re(U'(0), ASU'(0))+ 2Re|A %" :H "p “( )
e(u( ) U( ))"' eH dtllL,((0,7);H) P o4 Lz((O,T);H)+ P ()dt2 L,((0,T);H)
2
5 Re(p_% t )d_l: ,p% (t)A%u(t )j . (5)
dt ((0,T)H)

Integrating by parts, we get
2

_2Re(10%(t)OI : ’p%(t)Azu(t)j L(0.T)iH) (

dt?

“),.,
] o) Jorzme (w0 ') 2 i(

:2Re[[A%u'(T ),A%U(T)) ( A2u(0 ﬂ

d
d

2((0,T);H)
=2Re(A%u()A/Su()j+2ReH du -
L2((0.T);H)
= 2Re(U'(0), ASU'(0))+ 2Re[A %t [ .
L2((0,T):H)
Since, according to the hypothesis of the theorem Re (U (O), ASu (0))2 0, then we get that
2
2 Re(p_% t)9Y o2 At )J > 2Re| A% . (6)
dt Lo((0.T):H)
L2((0,T)H)
Taking into account inequality (6) in (5), we obtain
2 2
‘p% Pu e 5 d°ult) ) + Hp%Azu + H (7)
Lz((ovT)?H) dt® L omm) L2((0.T)H) Lo((0.T)H)
Therefore, if Pju = 0, then it follows from inequality (7)
) 2
dt LT L) AT o)

Therefore A’u=0,ie U=0.
Let us now prove the regular solvability theorem for problem (3), (4).
Theorem 1. Let conditions 1), 2), 4) be satistied, Re AS >0 & H . Then problem (3), () is regularly solvable.

Proof. We write problem (3), (4) in the form of the equation
0 2
Pu="f, f(t)eL,(0.T)H) ueW,s((0,T);H).
It follows from Lemma 1 that KerP, = {0} Now let us prove that the image of the operator

2
P, ZV?/z,s((O,T);H)—> L,((0,T);H) coincides with the space f(t)eL,((0,T)H), ie. Pu=f has a
solution for any f (t)e L,((0,T)H). Let
f(t),te(0,T
L]0
0 ,teR/(0,T)

Denote by f; (5) Fourier transform of a vector -

ObViously, fl (t )E I—z(R H)’ H fl HLZ(R:H) :” f ”LZ((O,T);H)'
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functions f; (t ), Le.

>

—h
i
o)

g):%ifl (e dt.

Then we define the vector - functions

0 (0=
u,(t)=

(E?E+a?A2)" 1, (t)e "< dt,

N -
5
—.3 é'—-S

8

(£2E+ g2A%) f (t)e "< dt,
atteR= (—OO, oo), Show that U, (t ), U, ) EW22 (R : H) Indeed, by the Plansherel theorem
d? u, 2 N 2
‘ U, (t ) +H Azu @ Lz((o,T);H):HAzua(é’:X L,((0,T)H)
Lo((0,T)H)

dt?
Taking into account that U, (t ): (52 E+a’A’ )71 fl (f), obtain that

—+

2
2

W2(R; H) +H fzﬁa (é’:)uiz((o,T);H)'

2 ez 2 n2 )7 2 2 252\t ¢ 2
ua (t) W2 (R;H ) B (§ E+atA ) fl (5) Lo(R; +H (A EvathA ) fl (5) L2 (R; H) =
2 2a2Y1L £ 2 2 2 _
(§ E+a’A ) L RH) f, (&) L RH) (A E+a’ A Hf B
) 2 a2\ 2 22V £ ?
[snliereve [ wanflaeson) J .

Next, using the spectral decomposition of the operator A for any & € R obtain

[(EE+a? A 1, (0)| = sup | e2(e2E+a?A?) | <1 | A*(AE+a?A7) | -

2
T LY

2
W2 (R;H ) (1+,8_j|

= sup

O'EO'

= Sup
oea(A)

02(§2E+a202)_1 HS%
a

Then ‘ Hence U, (t ) eW; (R ‘H ) Similarly, it is proved that

(0.T)H)"

Ju, ®)

e Uy (t ) eW; (R ‘H ) Then it is obvious that

0.T)H)
u,(t),te(0,T)
ez”’:{o teR/0,T)
u,().te(0,T)
6Zﬁ:{o teR/0,T)

belong to the space W,/ ((0 ,T)Z H ) and according to the trace theorem
(i) ()
é:a (O)EHZ_J'_%’ ga eHz_j_%’
(i) (i) i
£P0)e H, g0 e H, 4, i=01

On the other side Cfa (t ) satisfies the equation

SAUO e pre)= 1 1)

dt?

but §ﬂ (t ) satisfies the equation

JAU0) L g aut)=1 1)

dt?
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in [O,T ] almost everywhere because U (t ), u 5 (t ) satisfies the equation
GO0 ot pu(t)=1,0),

2

JAUO e )= 1, (1)

dt?

in R= (— oo,oo) almost everywhere. Now consider the vector function
u (t )= é:a (t )+eiaAt¢1 +e_a(t_tOA)§02 ’t € (O’tO)
§ﬁ(t )+e Mo, + e P Ay te (to ,T)

where are the vectors @,, ¢,, ¢;, ¢, so for unknown vectors that belong to the definition. Obviously, if we

2 2
show that @,, @,, @, ¢4GH% and Ua(t)EV(\le,s((O,T);H), we get that U (t)eV(\)/z,s((O,T);H),

02

Pu = (/t) = =f (t , te [0, T ] Then from the condition U (t ) eW,, s((O,T); H) follows that

)
E.(0)+o +e70‘t°Ago2 = S(§' (0)- aAp, + ahe ~atoh ®, )
E,(T )+ e’ﬁ(T’t")Atgo3 +¢, =0
Elto) e o g, =&, )p, e,
£to)-ahe g rap, =, (t)-pAp + p AT,

Blte-T )A

From the second equation we obtain that ¢, = —€ -$, (T ) Hence we get

o +aSAp +e o, —aAe g, =S (é' (0))—§a(0)

A gy ==&, (T )

e P+, —p, -/ T =g e, ) £.(to)
—aAe_“t°A(ol+ag02+,6’A+ﬂAe A§D4:§lﬂ(t0)_é:a(t0)

Its  obvious  that  A(£,(0)-¢,(0)e Hy,. s, (0)-¢&,(0)e Hy,  =&,(T)eH,,

é:ﬁ(to)—fa(to)eH%, rf‘ﬁ(to)—rf;(to)EH%. It follows from the second equation that

e

@, =—¢€ ﬂ(to_T)A¢3 —&, (H ) Considering this expression in the third and fourth equations, we obtain
e atOAgﬁl +@, — (E e?/leT) ) gﬂ( ) gg(to)_ eﬂ(toq )é:a (T)_ aeiatOA(Pl tag, +
+AE+e T oy = AT ). ()

Thus, in order to define @4, @,, @;, @, we obtain the following system of equations

(E+aSA)p, +(E+aSAp ) "o, =y,

e Mg =y,

e g+, —([E-e T )=y, )
—ae "o —p, —g (E LAt )A)(os =y,

where legﬂ(to )_ga(to)_eZﬂ(to_T)Aéa(T), sz_éﬁ(T) 5/)’( ) gt ( ) V= 5/;( ) ga(tO) Hence it

follows that v/, , , , e H ., , moreover, all vectors , , , known. It follows from the third and
Vi, Wy, W3, Wy % Vi, Vo, W3, Wy

fourth equations of system (8) that

20, :[(1_EJE—[1+ﬁje2ﬁ(t°T)J<p3+(l//3+l//4) ()

[24 (24
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2e Mg = &1+ ﬁj E +(ﬁ—1je 2#kaT )j¢3 +(Ws +wy)- (10)

(24 o

and

Thus, from (10) it follows that
281t,-T ) )= —at A
g03:((a+ﬂ)E+(,B—0{)e t )) 10{(26 ° (Pl_'//s_‘//4)' (11)
For the correctness of the definition, we show that the operator ((a + ﬂ) E+ (ﬁ — a)e 26toT ))_l exists and

is limited. From the spectral expansion of the operator A follows that

25T\ [ 1
((a+ﬁ)E+(,B—a)e ol )) - I(a+ﬁ)+(ﬂ_a)ezﬂ(toT)UdE“”

at o € O'(A)(O'Z Mo > 0)

N I
+

| 1 |S <
‘a+ﬁ+(ﬂ_a)e2ﬁ(to—ﬂa‘ a+f 14 (ﬂ—a)ezﬁ(tO—T)a B a+,31_ -« eZﬁ(tO—T)a
f+a f+a
- 1 1 _ 1 '
a+ﬂ1_ﬁ—a a+ﬂ—w—a
p+a

Thus, taking into account (11) in (10), we obtain
20, = ((a+ pE+(B-a)e ) (a+ p)E+(5-a)e " ) oo 0 —v, -v )
20, = (e~ pE-(Bra)e™ (s p)r (p-a)e T e -

Then it follows from the first equation of system (8) that
(E+asSA)g, +(E-asA)e " (a-pE-(B+a)e™ ),

((a - ﬁ)E - (ﬁ +a)e o ))l(eatOAgol - %(‘//3 TV, ))

Next, we denote =Ap eH and actin on both sides of the last equation we et
Y41 2 A g q g

1
§(W3—l//4)~

(E+aSA)y, +(E-aSA)Qy, =z, , where

Q =(@-pE-(B+a)e™ ")) [(@+pE+(B-a)e M),

It's obvious that ¥, € H,, . Thus, in H,, has the following equation
Y41 4 Y geq

(E+Q)x, +aAS(E-Q)r =1 (12)

F:(E+Q)+aAS(E—Q):H%—>H% (18)

Denote by

and show that the operator F turn to H}/. To do this, we estimate the norm of the operator Q. Now let's show
2

that ||Q)| <1. Let
Q =((a-B)E-(B+a)e* ™)) [+ pE+(B-a)e T

Ce=p) -l peT
"Ql” gzg(&)‘ a+ﬁ+(ﬁ—0{)ezﬁtt°T)A ‘

It's obvious that
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Let us show that ”Q” <1.Let1) a<f.Then

(a ﬁ)(a+ﬁ)”“*

‘=f(6)

|
azg(pA‘ a+f+(f-a)?!

It is obvious that at o > 1, >0

t'(0)=2p(t, -T)e*""" Va0 p=8a p*t, -T)e 2ﬂ(‘°*”"<o.
p)-

B=
28(to-T
Thus, f(O') monotonically decreasing function, so SUp | (0( (0! hl 'B) 25 (TA
aea(A‘ a+,B+(,B— )e ‘

because  from the inequality f-oa+ (ﬂ + Ot) 20t T 7 < p+o+ (,B - a)ezﬂ(tﬂ )6. Follows  that
24lto=T)o

<1

e < 2a . Because to —T <0, >0, then this inequality is true.

9)Let a>f, a>f and ,B—a>(ﬂ+a)e2ﬂ(t°_”“, o*>$(to —T)’llnu.

a+pf
[(@=p)=(a+p)e™" ™| (B-a)+(a+p)e?"
\a+ﬁ+w )¢’ | s p(a-plettt T

Because f '(O')Z Zﬂ(to —T) 2hlto-T 4aﬂ 8a,3( ) 28lto-T)o >0, ie. f(O') increases monotonically
(a=p)-la+p)e” ™| _a-p _

wotr| atpe(pa)e | ar
Now a > f,
2to- ) i _ a-— ﬂ
p-a>(B+a)e G>2ﬂ(t TV In a+,8
(a=p)laspe | faspe™T a—p) ()
| a+B(p- k”ﬁ’ \ a+f+(a-petTr |
Then

f(O'):Zﬁ(to _ ) 2,Bt0 40:,8 80(,8( ) Zﬁ(to_T)U(tO _T)
a—-pf ’

a+

ie. function f(O') for u<o< %(to —T)71 In is decreasing and SUP ”f (G)H <1. Hence

—atgA

1Q z]=|e Qx| < e
”F}("% ZC";(”% Since at y € H% F)(Z(E+Q))(+aAS(E—Q))(,then we multiply by H}/2 both parts

||)(||<9||}(|| 0 <1. Then for the solution of equation (12) we show that

of this equality are scalar on (E - Q)}( B H y we have
2

(F7.(E-Q)x)=(E+Q)x.(E-Q)x)+(@AS(E-Q)x.(E-Q)x).
Then Re(Fz,(E-Q)z)=Re(E?-Q%)z 1)+ Re(a AS(E-Q)2.(E-Q)x)=| 2|’ -[Q x| +
+aRe(@AS(E-Q)x.(E-Q)y). Because aRe(a AS(E—Q)x,(E-Q)x)=0, a>0, that

Re(Fz.(E-Q)x)z[ 2] -IQx [ =-0)| .

Hence

1-0) 2| <Re(Fz.(E-Q)x)<[F 2 [ E-Q)x || F x 1+ )] 2.
Hence we have that "F}(”E%"}(”=C”}(” If K=AS, ReK>0

F' =(E+Q)+a(E-Q)K and F'p=(E+Q)+a(E-Q)K #
F(E-Q)=(E*-Q*)+a(E-QK(E-Q)

and

130



Journal of Management World 2025, 3: 122-135
F'E-Qz z=[E*-Q )z 1)+a(K(E-Qx(E-Q)z).
Re(F'(E-Q) 2. 2)2—0%)| x|} . 1t (E-Q)x =Y. then
(F'y.(E-Qy)=0-0°)] (E-Q)y [ or
Because H(l -6° )(E -Q

b-0%)(E-

)_1 yH > (l— 9) Yy, then

equation (12): ¥, = Fflzl. Because y;, =A@, @, = Aflj(l € H%. Then, obviously, we can define @, ,@;,

@, € H%. Thus, the vector function U (t)GWZZ:S((O,T); H). On the other side

2

|
L0 M) dt

02
we get that the operator P; continuous out Wz,s((O,T); H) on the LZ((O,T); H). Then the Banach

theorem on the inverse operator implies the assertion of the theorem. The theorem is proved.

Lemma 2. For any U (t) e W, ((o,T ) H ) the following inequalities hold

2

2 d®u 2
[PouTory) = _dt_2+p(t)A u

+m§lXp J“AZ

,((0,T);H)

L,((0.T):H)

wst APl (19
m|n ia + f? ) (0.
d_U ” (15)
At orpm) = min (a B °
Proof. It follows from the proof of Lemma 1 that
2 2
-y d%u 1y d*u 2 du
p o 2 > p 2 prAm +2%—— (16)
L RS dt Lo )H) LL(O.T))
02
On the other hand at U EW ) H)
T ) . ‘
A— I( j / u(t), A2yt ()) ——Re(A%ASu (0),A%u (O))+
(0T): 0 0
2
H | +p d’
L,((0,T)H) dt? (O T)H)
Hence we get that
112
H pm| 4|, du _2” +2Re(ASu'(),u'(O))y.
L,((0,T);H) dt (0,T); L,((0T)H) 2
Because 2Re (AS u'()u (O))% >0, then
2 2, |12 dul?
Hp%Azu + ,o_}/2 d g >2 |A— (17)
L,((0,T);H) dt L,((0,T);H) L,((0T)H)
Taking into account inequality (17) in (16), we obtain:
2
‘yAZ > 42l
SN B R
or
I S P
dt 0.T)H) 2 L((0.T);H) 2min a ﬂ L,((0.7); H)

Le. the correctness of mequahty (15) is proved. On the other hand, it follows from (16) that
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2
p%AZU < p_%POU

L,((0.T)H)

< p_% Pu 2 :
L,((0.T):H)

:Hp%p% u Au

L(0.T):H)

L,((0 ,R):H)
Hence we have
HAzu <
L,((0,T);H)

L,((0,T):H)

<max,o pru A’u

L,((0,T);H)

1
<
" min iaz’ﬂz )”POu”Lz((O,T);H)
Inequality (14) is also proved.

Lemma 3. Let conditions 1)-3) be satisfied. Then

AT+ A

L2((0.T):H)

<

du
Al(t) L,((0.T):H) B

T + HAZ(t)u

,((0,T);H)

|Pu ||L2((0,T);H) =

d_u + 1 sup “A
dt L(OT)H) min ia ,Bi

X‘Az u HLZ((O,T);H) '(18)

It follows from the intermediate derivatives theorem that

d u

Al <ol
L,((0.T):H)

Considering this, in (18) it follows that

X

L,((0.T);H)

< sup HA1 HLZ((O,T);H) A

teOT

du
, and [A, u HLZ«o,T):H) HA_

s CZ” u ||W22(0 T)iH

L2((0.T):H)

W2 (0,T);

L((o.TyH) S cONst Jull,

W2 (0,T);
The lemma is proved.
It follows from this lemma and theorem 1 that the operator

PP, +P:Wa((0.T):H)> L, (0.T):H)

continuous.
Now let's prove the main theorem.

Theorem 2. Let conditions 1)-4), Re AS >0 in H y and there is an inequality
2

1
o) min ia ,B? jsup HA Alz“tz((o,T):H)' (19)

02
Proof. Let us write problem (1), (2) as an equation PU=Pju+P U, which UeWz,s((O,T);H),

fel, ((0 ,T); H ) By theorem 1, the operator

1
o= o g [A)A

Then problem (1), (2) is regularly solvable.

02
P,:W2s((0,T);H)—>L,((0,T);H)
2
mutually unique. Then for any @ € |_2 ((O,T); H) exists U GV(\le,s((O,T); H ), such that

PUu=w
Then relatively @ we obtain the equation @+P, P;*=f in the space L, ((O,T); H). Then for any
weE L2 ((O,T); H) have

_l_
0.T):H)

+A 01,

A )A‘lA?j—l: s, ()4 7AT |,
L.((0,T);H)

4
((0,7); HAl A A_

B d
BB~ 3 051 T

L,((0,T):H)

R OA K]

T)H) (20)

<su .
tp L,((0.T):H)
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Taking into account inequalities (14) and (15) in (20), we obtain

_ 1
HPlPO COHLZ((O,T);H 2min ((Z,,B p HAl H ,(0,7);H) *

+mi—ﬂ) Sup ”A (t)A

Therefore, the operator E + P1P07 turn in L, ((O,T); H). Then a)=(E + Plpo_l)_lf . Hence we have that

=P (E+PP") " f and

):H) :5||w"|_2((o,T);H)'

1
-1
C " "w2 0.7); S “PO HLZ((O,T);H)—)WZZYS((OO,T);H)m” f ”Lz(\OvT\?H) (0.T)H)"
The theorem is proved.
Corollary. Let conditions 1)-3) be satisfied and inequality (19) hold. Then the problem is
_d du(t
o) pau) - A08 Y A, 1 ul)= 1) o)
u(0)=0,u(T)=0, (22)

regularly solvable.

The proof follows from theorem 2 when S =0. Note that if problem (21), (22) is regularly solvable, we can
prove a more general statement.

Theorem 3. Let conditions 1), 3) and p(t ) measurable scalar function such that 0 <o < p(t )S P and there is an
tequality

zf sp HA JA- H+—sup HA )A | <1

Then problem (21), (22) is regularly solvable.
Proof. Here we also denote by

Pu=r 9 Ju=-C 0 aut). ru=r (9, )= A0 A, Ou).
)< (©0.7)(0,0)

It's obvious that P =P, + P, :W2((0,T);(0,0))—> L, ((0,T);H) continuous. From lemma 1 for S=0
follows that KerP, = {0} Let us prove that the operator Py displays space W, ((O,T);(0,0)) on
L, ((O,T); H). If we consider the operator L, in the space L, ((O,T); H) generated by an operator-

differential expression
d?uft
PO(%JU _— dtz( )+p(t)A2u(t ),

with domain of definition D(Lo)z {u:u e W, ((O,T);(0,0))}, then we get that the operator L, positive-

definite self-adjoint operator in space L, ((O T ); H ) with scope sz ((O ,T); (O , 0)) (U (0) =0,u (T ) =0 )
Really

(LOU’ )L(OT)H) (U L V) L,((0,T)H)’
and
d?u

T T
(Lou,u), Lo :_([( F,ujdH!(p(t)Azu,u)dt2a||Au||i2((0‘T);H) > a5 (U)o =

- a'uo ((0.T):H)’
ie. Ly=auiE in L, ((O,T); H). Then the operator L0 turn into L, ((O,T); H ), L," bounded in space
L, ((0 ,T); H ) Thus the problem

U, H0)au() =1 6) (23)

dt?
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u(0)=0,u(T)=0 (24)
regularly solvable. To prove the regular solvability of problem (21), (22), we will use the following inequalities
2 |12 1 2
L] PSSl ) (2)
and
du 1
— < Pu e (26)
dt o) 2o ” 0 "Lz((o,T),H)

which follow that from (14) and (15) with S =0. Next, writing problem (21), (22) in the form
Pu=P,u+Pu, :u(t)eW/((0,T);(0,0)), f(t)eL,((0.T);H)
and repeating the arguments in the proof of theorem 2, we complete the prootf of theorem. Consider one example.

Example. Let Q = (O,T)x (0, 7z’). In the area Q consider the following boundary value problem

2 2 2 2
22 Yot = T8 ()Pl P2 g ) T o
u(x,0)=(x,T)=0, u(t,0)=(t,7)=0 (28)
where f(x,T)eL,(Q), O<a< p(t )<ﬂ, p (X,T), q (X,T) measurable and bounded functions in the
domain Q. Define in space LZ(O;E) operator Azy(X)= -y (X), D(A2)= {y: y' is an absolute continuous
function on [0,7{], y"(X)e L2(0,7r), Al(t )y(x): pl(x,t)y'(x)}, D(Al): {y: y(x) is an absolute
continuous function on [0, 7{], y'(x) € L2(0,72') and Az(t)y(x) =0, (X,t )y(x)},

D(A.)={y (x):y (x)< L,(0.7)}
Then it is obvious that
sup|[A, (t) A = sup [p(t,x), sup|A,(t)A?]= sup [qt,x).
t (t.x)eQ t (t.x)eQ

Then from theorem 3 we obtain the following
Theorem 4. Let p(t ) measurable function on [O,T ], moreover 0 < a < p(t )< L <o, p(X,t ), q(x,t )

measurable bounded functions in the domain Q , moreover,

1 1
su t,x)+— su t,x)<1/\
7 RPN+ Z s faltx)

Then for any f (X L )e L, (Q) exists a vector function U (X,t )EWZZ’2 (Q), which satisfies equation (27) in Q almost

everywhere on the border Q condition (28) and we have the estimates

|6’2u(x,t)|2 d2u(x, )| 2
J(;I‘ | e |dxdtsconstg|f(t,x)| dxdt.
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